Oligonucleotides with novel, cationic backbone substituents: aminoethylphosphonates.
نویسندگان
چکیده
Oligonucleotide (2-aminoethyl)phosphonates in which the backbone consisted of isomerically pure, alternating (2-aminoethyl)-phosphonate and phosphodiester linkages have been prepared and characterized. One of these single isomer oligonucleotides (Rp) formed a more stable duplex with DNA or RNA than its corresponding natural counterpart. Hybrid stability was more pH-dependent, but less salt-dependent than a natural duplex. The specificity of hybridization was examined by hybridization of an oligonucleotide containing one (2-aminoethyl)phosphonate to oligonucleotides possessing mismatches in the region opposite to the aminoethyl group. In contrast to oligonucleotides containing (aminomethyl)-phosphonate linkages, oligonucleotide (2-aminoethyl)phosphonates were completely stable to hydrolysis in aqueous solution. These oligonucleotides were resistant to nuclease activity but did not induce RNase H mediated cleavage of a complementary RNA strand. Incubation in a serum-containing medium resulted in minimal degradation over 24 hours. Studies of cell uptake by flow cytometry and confocal microscopy demonstrated temperature dependent uptake and intracellular localization. (2-Aminoethyl)phosphonates represent a novel approach to the introduction of positive charges into the backbone of oligonucleotides.
منابع مشابه
Oligonucleotides with Cationic Backbone and Their Hybridization with DNA: Interplay of Base Pairing and Electrostatic Attraction
Non-natural oligonucleotides represent important (bio)chemical tools and potential therapeutic agents. Backbone modifications altering hybridization properties and biostability can provide useful analogues. Here, we employ an artificial nucleosyl amino acid (NAA) motif for the synthesis of oligonucleotides containing a backbone decorated with primary amines. An oligo-T sequence of this cationic...
متن کاملBackbone modification of nucleic acids: synthesis, structure and therapeutic applications.
Nucleic acids have been extensively modified by replacing the phosphodiester group or the whole sugar phosphodiester with alternative anionic, neutral and cationic structures. Several of these modified oligonucleotides exhibit improved properties including enhanced recognition and binding to RNA, duplex DNA and proteins. This has resulted in the development of new and more potent antisense and ...
متن کاملRestoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development
Objective(s): The use of antisense oligonucleotides (AOs) to restore normal splicing by blocking the recognition of aberrant splice sites by the spliceosome represents an innovative means of potentially controlling certain inherited disorders affected by aberrant splicing. Selection of the appropriate target site is essential in the success of an AO therapy. In this study, in search for a splic...
متن کاملWater-soluble, meso-substituted cationic porphyrins--a family of compounds for cellular delivery of oligonucleotides.
The delivery of oligonucleotides to appropriate intracellular compartments is crucial to their development as tools in gene function studies and as therapeutics. Here, we report the characterization of meso-substituted cationic porphyrins as a large class of water-soluble reagents for oligonucleotide delivery. These porphyrins form non-covalent complexes with single-stranded oligonucleotides an...
متن کاملNovel cationic amphiphiles as delivery agents for antisense oligonucleotides.
There has been great interest recently in therapeutic use of nucleic acids including genes, ribozymes and antisense oligonucleotides. Despite recent improvements in delivering antisense oligonucleotides to cells in culture, nucleic acid-based therapy is still often limited by the poor penetration of the nucleic acid into the cytoplasm and nucleus of cells. In this report we describe nucleic aci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 22 24 شماره
صفحات -
تاریخ انتشار 1994